Data Economy & Innovation Cycles: An International Comparison*

December 2, 2021

Man Cho

The KDI School of Public Policy & Mgt.

(* This presentation is based on the findings documented by Cho·Moon·Rhee·Choi (2021))

Bio of Man CHO

Man CHO is a full professor at KDI School of Public Policy and Management in Korea, and is currently serving as Chairman of International Academy of Financial Consumers, an international academic association with over 100 members from more than 20 countries. His teaching and research areas include FinTech, credit risk management, real estate finance, and and urban and regional economics. Before joining KDI School in May 2007, he worked for Fannie Mae, one of the major MBS (Mortgage Backed Security) issuers in the U.S., in which he involved with various R&D projects such as mortgage and MBS pricing, collateral (property) assessment, and mortgage default and prepayment modeling and also served several managerial positions. Prior to Fannie Mae, he worked for the World Bank as a long-term consultant (1991~92), and taught at the Johns Hopkins University as an adjunct professor (2004~07). He holds a Ph.D degree in Applied Economics and Managerial Science from the Wharton School of the University of Pennsylvania in 1991.

Abstract

The main objective of this research is to conceptualize the term "data economy (DE)," and, further, to examine the issue of how to operationalize that in three particular service sectors in Korea – finance, real estate, and medical service through an international comparison. To that end, we surveyed the recent studies of relevancy, and also performed the meta-analyses by utilizing two sets of the DErelated academic studies in the three sectors that are extracted from two international databases: 263,974 articles on the health and medical services from PubMed established by the National Institute of Health in the U.S.; and, 26,859 articles on the finance and real estate from the Web of Science. Our results show that: DE is defined as an ecosystem that can enhance social welfare in a national or regional level through accumulating sharing analyzing utilizing digital data; Its three core elements include a DPA(Data•Platform•AI) based infrastructure along with institutional and market driven stimulators; Its expected socio-economic effects as argued in the literature are categorized into three types - (1) the platform effect, (2) the predictive power effect, and (3) the new analytics effect. And the results of the meta-analyses indicate that: The number of academic studies on DE related to the three sectors has been in an explosive growth path since around 2015; The co-authorship and the intercountry collaboration have also been increasing steadily; As to the outcomes achieved by the Korean researchers, the country fairs reasonably well in terms of quantity (ranked as 8th place for both databases) but tends to lag in terms of quality (the average number of citations, and the newness of topics). Using the above results, several policy implications are discussed.

Outline

Introduction

- Conceptualizing Data Economy (DE)
- □ DE: Its Expected Social Effects
- □ The Meta Analyses Performed
- Policy Implications
- Concluding Remarks

Introduction

Digital Transformation (DT): The governmental responses

- Strategizing the economic social development in response to the on-going DT trend
 - USA: The OPEN Government Data Act of 2019 (initiating OpenData initiative & Data.gov
 - China: The plan for developing BigData industry (2017), & developing the Data Exchange
 - EU: The EU data privercy directive (EU GDPR, 2018); Initiating GAIA-X project, to activate 'data economy' (2018)
 - Japan: Reform for Society 5.0 (2017) ~ to establish the institutional base for data economy and manpower development plan
 - UK: The UK Digital Strategy (2017), and the national data strategy (2020)

Digital Transformation (DT): Its impact on the global industry

- The dynamic re-structuring of the global industrial structure
 - Change of the global top 10 companies (2007~2017)
 - Rise of the US & Chinese global companies, but decline of the European big corporations
 - Changes in the top 100 global firms (last 20 years): US ~ 50 → 61; China ~ 0 → 15; Europe ~ 41 → 15 (no change for the Korean & Japanese companies)
 - Trend of the global GDP: US ~ 24% (in 2020); China ~ 18%; Europe ~ 34% → 25% (btw 2000-2020)
 - □ The creative destruction processes being initiated by the US & Chines companies backed by Data-Platform•Al (DPA) → To be termed as the DE-enabled industry

The global top 10 companies (Change in 2007~2017)

28-Jun-07		08-Sep-17		28-Jun-07			08-Sep-17
	-	1	Apple	1	Exxon	×	
	12	2	Alphapet (Google)	2	GE		
3	/>	3	Mcrosoft	4	PetroChina		
		4	Facebook	5	Royal Dutch Shell		
		5	Amazon	6	Citigroup		
		6	Alibaba	7	AT&T		
		7	Tencent	8	Gazprom		
				9	BP		
		, 13	Samsung Electronics	10	Toyota		10
29							21
					[24
70							27
81	11						30
367	//						38
Below 500							41
							69
						N N	239

<u> 출처: 김희수 (201</u>8)

[Data] Evolution of technologies, internet firms, and the use of 'FinTech' terminology

Research Questions

- How can we conceptualize 'Data Economy' (i.e., its definition, elements, market and institutional enablers, and so on)?
- What are its expected socio-economic outcomes, in the cases of three particular service sectors in Korea (i.e., finance, real estate, and medical service)?
- What trends do we observe from the academic research communities (related to the above sectors) as to DE?
- □ What policy implications can we draw from the analyses on the above question, in particular, for Korea?

Conceptualizing Data Economy (DE)

Data Economy: What is it?

- Data Economy: Definition
 - An innovation ecosystem that generates socio-economic values by efficiently distributing or trading digital data

"A (global) digital ecosystem in which data is gathered, organized, and exchanged by a network of vendors for the purpose of deriving value from the accumulated information" (European Commission (2018))

Data Economy: Key elements

- Input: To accumulate & share digital data (BigData•Cloud•API•DLT)
- Thruput: To make data-driven innovations possible (AI & data analytics, ML & DL)
- Output: To increase social welfare with the data-driven innovations
- Plus various market and institutional "enablers"

A Basic Structure of Data Economy

The DE-based Innovation Sectors

- □ The DE-based innovation sectors
 - Manufacturing: SmartFactory, SmartFarm, Driverless Car
 - Service, private: Digital health (e.g., online medical service), FinTech & InsurTech, PropTech
 - Service, public: SmartCity, Open Government
- □ Several cases of the DE- (or DPA-) based innovation
 - ZOPA (Zone of Possible Agreement)
 - Online credit evaluation by P2P lenders
 - SmartHome and prevention of Alzheimer disease
 - InsurTech and financial inclusion

Zone Of Possible Agreement;

(a negotiating term identifying the bounds within which agreement can be reached between two parties)

[참고] FinTech loan production process (the case of Lending Club)

2021-12-2 SKKU Seminar Source: Jagtiani and Lemieux (2019) 16

InsurTech & Auto/Health Insurance

Health Care Device_낙상방지

DOMO Safety

Behavioral pattern of a healthy 80-year-old woman Behavioral pattern of a 81-year-old female Alzheimer patient (MoCa 23/30)

CAR Classifier

Wearables & InsurTech

Health Care Device_고혈압, 당뇨관리

■ 웨어러블 혈당측정/투약 · 그래핀 전자피부

- ■웨어러블 연속혈당측정계
- · Abbott 'Freestyle Libre'

· Dexcom G5

SKKU Seminar

DE: Its Expected Social Effects

Socio-economic Effects of DE (from the Global Research Community)

- □ The rising trend of academic research on DE during the last several years → Three main socio-economic effects of DE
 - 1. Platform effect
 - 2. Prediction power effect
 - 3. New (data) analytics effect

Key arguments being summarized in the subsequent slides

1. Platform effect of DE

- □ WWW (1989) & smart phone (2007) → Exponential growth of internet-mobile platforms, resulting in:
 - Dramatic reduction in transaction cost (TC)
 - Rise in digital data via online transactions (on consumer behavior)
- Implications to the three sectors
 - Finance: Rise of "disintermediation" (Fuster et al. (2020), Cho (2020), Philippon (2015) and (2016))
 - Real estate: The sector with high search cost; Rise of PropTech \rightarrow TC \downarrow (Baum (2017))
 - Medical service: Rise of remote/inhouse medical service via platform → TC↓ (Oh (2020), Kang (2020))

[Data] Traditional & FinTech-based Financial Intermediation

출처: Cho (2020)

2. Predictive power effect of DE

- □ Accumulate·shate·utilize digital data → Predictive power for optimal technology or business model (Farboodi/ Veldkamp (2021))
 - Digital data ↑ → "MSE" in predicting optimal technology ↓ → Qualityadjusted production ↑ (individual firms)
 - Market-wide DE effect: Generally decreasing returns to scale (DRS); But IRS for start-ups & for the state of low data accumulation
 - ③ MSE↓ vs. Technology frontier(game changer)↑ ~ Another DE effect
- Related micro & macro DE effects
 - DE effect in predicting business cycles (Ordonez (2013), Fajgelbaum et al. (2017)), productivity growth rates (Agrawal et al. (2018))
 - Reduction in user cost of capital (Begenau et al. (2018)), and in the role of collateral in the lending sector (Gambacorta et al. (2020))

[Data] Key arguments by Farboodi/Veldkamp (2021)

(1) $y_{i,t} = A_{i,t} \cdot k_{i,t}^{\alpha}$

(2)
$$A_{i,t} = \bar{A} - (a_{i,t} - \theta_t - \varepsilon_{a,i,t})^2$$

- y: Quality-adjusted output (firm i time t), per k units of capital
- □ A: Technology-driven quality (of goods/services produced); A bar ~ technology frontier (time and firm invariant); a ~ the firm's production technology choice
- \Box θ , ϵ : Persistent and transitory components of the technology ($\theta_t + \epsilon_{a,i,t}$); $\theta \sim AR(1)$ process with a random innovation
- The role of data: Helping firms to choose better production techniques, i.e., reducing the prediction error $\varepsilon_{a,i,t}$ such that $y \uparrow$ for given levels of factors (k, l) or new and improved business models or processes
- Three key features of data: 1) Data is a by-product of economic activity; 2) data is information used for prediction, and 3) uncertainty reduction enhances firm profitability
- More fundamental data-driven innovation (i.e., game changer): Shifting the technology frontier (A bar)!

[Data] Key arguments by Farboodi/Veldkamp (2021) (cont'd)

- □ Diminishing returns for a data-accumulation economy: Over time, the aggregate stock of knowledge and aggregate amount of output would have a time path that resembles the concave path in Figure 2 (Without idea creation, data accumulation alone would generate slower and slower growth → the Solow's growth path)
- □ Increasing returns to scale (the data feedback loop): A firm with more data produces higher-quality goods, which induces them to invest (on data) more, produce more, and sell more → Causing aggregate knowledge accumulation to accelerate.
 - Diminishing returns always dominate when data is abundant; But when firms are young, or data is scarce, increasing returns can be strong enough to create an increasing rate of growth.
- Implications to our three sectors
 - Medical service: Data-driven innovations in developing new & better medicines or more efficient (and more preventive) curing methods
 - Financial service: Data-driven innovations in developing more efficient (& accurate) risk-assessment and decision makings (underwriting or segmentation, pricing, and hedging) and more welfare-enhancing financial products or service processes
 - Real estate industry: Similar data-driven innovations as in finance (e.g., real estate FinTech); Other real estate specific innovations (SmartHome, RE-share economy, smart construction, and so on)

[Data] Key arguments by Farboodi/Veldkamp (2021) (cont'd)

Figure 3: New firms grow slowly: inflows and outflows of data of a single firm.

Line labeled inflows plots the individual firm *i* version of the quantity in equation (10), that makes an optimal capital decision $k_{i,t}^*$ and data decision $\delta_{i,t}^*$, with different levels of initial data stock. This firm is in an economy where all other firms are in steady state. Line labeled outflows plots the individual firm *i* version of the quantity in (11). Data production is $z_i k_{i,t}^* \sigma_{\epsilon}^{-2}$, which is inflows without the data purchases $\delta_{i,t}$.

2. Predictive power effect of DE (cont'd)

Implications to the three sectors

- Medical: Accumulation-utilization of medical data → New medical procedures & medicine via R&D个
- Finance: Efficiency in risk measurement & mgt. (e.g., FinTech) ↑
 - 1 In measuring systematic & idiosyncratic risks; In credit evaluation
 - 2 Use of alternative data (e.g., "digital footprint") (Berg et al. (2018) 등)
 - → Information asymmetry \downarrow & financial inclusion \uparrow
- **Real Estate:** RE FinTech vs. non-finance PropTech
 - □ Non-finance RE: Shared economy; SmartConstruction (MSE↓)
 - □ RE market transparency↑: "Optimal" price indices (on the methodologies, serial and cross-sectional aggregations)

3. New (data) analytics effect of DE

- Explosive growth of the Al-based data analytics
 - The Al transition (algorithms → Machine Learning (ML) → Deep Learning(DL)): Being accelerated during the last five years
 - Enabling the use of non-conventional data (e.g., measuring economic activity via satellite pictures, classifying industries via tax filings)
 - A new family of analytics (e.g., regression trees, LASSO, random forests, ensemble) & the enabling software (e.g., R, Python)
 - Key implications (Mullainathan/Spiess (2017)): (1) Focusing on predicting dependent variable (y hat) rather than beta; (2) Machine- learning on numerous interactions & splines among x variables; (3) Relying on out-of-sample model performance tests

$$y = \beta \cdot x + \varepsilon \rightarrow \hat{y} = \hat{\beta} \cdot x + \hat{\varepsilon}$$

The Trend of the PubMed MeSH Headings (91~20): Medical Research

Rank	1991-1995		1996-2000		2001-2005		2006-2010		2011-2015		2016-2020
1	Neural Networks, Com		Neural Networks, Compu ter		Neural Networks, Compu ter	~ 2	Algorithms .		Algorithms		Machine Learning
2	Expert Systems		Artificial Intelligence		Algorithms	\sim	Artificial Intelligence	< .×	Neural Networks, Comp uter	<u> </u>	Neural Networks, Comp
3	Artificial Intelligence	and a start of the	Image Processing, Computer-Assisted	>	Artificial Intelligence		Neural Networks, Compu ter	~	Artificial Intelligence		Algorithms
4	Image Processing, Com		Algorithms	Ķ,	Robotics		Robotics		Robotics		Deep Learning
5	Diagnosis, Computer-A ssisted	/	Expert Systems	$\Lambda \beta$	Signal Processing, Comp uter-Assisted	,	Signal Processing, Comp uter-Assisted	1	Support Vector Machine		*Artificial Intelligence
6	Signal Processing, Com puter-Assisted	<u>_</u>	Computer Simulation	V.	Models, Biological		Models, Biological	$\langle \rangle$	Software		* Robotics
7	Computer Simulation	7~	Signal Processing, Computer-Assisted	$X \setminus I$	User-Computer Interface		Subtraction Technique	$\mathbb{N}/$	Models, Theoretical	$\langle X \rangle$	** Software
8	Radiographic Image En hancement	1.	Robotics	ΛV,	Models, Neurological	N.	User-Computer Interface	- X.	Natural Language Proce ssing	\mathcal{N}	Support Vector Machin
9	Software	[]	Diagnosis, Computer-Assi sted	M	Software	the second	Natural Language Proces sing	7	Models, Biological	\mathcal{N}	Models, Theoretical
10	Algorithms	\mathbb{N}^{+}	Radiographic Image Enha ncement	\mathcal{M}	Image Processing, Comp uter-Assisted		Software	(Signal Processing, Comp uter-Assisted	$\mathcal{N}\mathcal{N}$	Transcriptome
11	Anglography, Digital Su btraction	- X.,	Models, Neurological	$\langle A \rangle$	Fuzzy Logic	$\land \land$	Models, Neurologicał		Models, Neurological	λ	Natural Language Proce sing
12	Radiology Information Systems	/ 🌾	Software	$\langle \rangle$	Computer Simulation	$\langle \rangle / $	Fuzzy Logic	/)	Computer Simulation	\mathbb{V}	🍓 Models, Biological
13	Models, Biological	//	Angiography, Digital Subt raction		Models, Statistical	X	Models, Theoretical	1	User-Computer Interface	A Ì	Signal Processing, Com uter-Assisted
14	Robotics	$\backslash / =$	Fuzzy Logic	1	Subtraction Technique	/	Computer Simulation	and the second se	Fuzzy Logic	(N)	Gene Expression Profili
15	Magnetic Resonance Im	X	Tomography, X-Ray Com puted		Natural Language Proces	/ χ	Models, Statistical		Machine Learning	l A-X	Magnetic Resonance In
16	Decision Making, Comp uter-Assisted	(\setminus)	Radiology Information Sy stems	//	Pattern Recognition, Aut omated	$\langle \rangle$	Nonlinear Dynamics		Models, Statistical	X	Computer Simulation
17	Models, Neurological		User-Computer Interface	/	Models, Theoretical	$\langle \rangle$	Decision Support Techni ques	,	Internet	$\sqrt{1}$	Image Processing, Com duter-Assisted
18	Microcomputers		Models, Biological	//	Internet		Artifacts	/	Gene Expression Profilin	\wedge	Electronic Health Recor
19	Tomography, X-Ray Co	1	Natural Language Process	/	Angiography, Digital Sub traction		Image Processing, Comp uter-Assisted	\langle / \rangle	Electronic Health Record	-77	Internet
20	Decision Support Techn		Computer Communicatio		Expert Systems		Laparoscopy	X	Stroke Rehabilitation	1	Models, Neurological
21	Medical Records Syste ms, Computerized	4	Magnetic Resonance Ima ging		Imaging. Three-Dimensio	<u>`````````````````````````````````````</u>	Internet		Image Processing, Comp uter-Assisted	<u> </u>	Phylogeny

2021-12-2

The trend of WOS keywords: Finance & RE

The Meta Analyses Performed

The Meta Analyses: The DB compiled

- PubMed article Bibliography Data (medical science)
 - Keywords Artificial Intelligence, Machine Learning, Digitalization, Digital Health (linked with "or"); Publication Date - 1862-2020
 - Data Cleaning (written in English, published in 1991 or later, and so on):
 263,974 articles included (1991-2020)
- Web of Science, WOS (finance, real estate, and related social science disciplines)
 - Keywords FinTech (& its variations), PropTech, Data Economy, Big Data, AI, ML, DL, Digitalization ((linked with "or")
 - Scope of the journals Selected among SSCI and some inter-disciplinary journals
 - Result 26,859 articles included (1978~2022)

Observation (1): Explosive growth of the related research since around 2015

- PubMed articles (medical science): Frequency of the articles having explosive growth since around 2015
 - Two inflexion points globally one around 2003 & another around 2015; Korea only one around 2015
 - The internet (www) based innovations would have been more prevalent in the US and UK (further investigation needed)
- □ WOS articles (finance and RE):
 - Only one pronounced inflexion point around 2015, and an explosive growth since then
 - The social science research would be lagging that of natural science; The applied research (finance & RE) would be lagging the industry (i.e., research follows FinTech & PropTech)

[Data] Frequency of the PubMed articles

Digitalization in Biotechnology and Medicine

Publication Ye	Count (Article)						
ar	Global	Korea					
1991	1,784	2					
1992	1,847	4					
1993	2,069	2					
1994	2,296	9					
1995	2,699	10					
1996	2,672	6					
1997	2,478	6					
1998	2,692	14					
1999	2,998	21					
2000	3,260	21					
2001	3,642	43					
2002	4,011	34					
2003	4,282	46					
2004	5,559	68					
2005	6,553	90					
2006	7,016	116					
2007	8,693	151					
2008	8,662	158					
2009	8,816	209					
2010	8,370	197					
2011	9,073	260					
2012	10,162	286					
2013	11,960	362					
2014	12,830	374					
2015	13,774	442					
2016	14,871	442					
2017	17,485	553					
2018	21,753	809					
2019	27,372	1,056					
2020	34,295	1,445					

Observation (2): Dominance in research by three countries – US, China, and UK

- □ The variations observed across the top countries (PubMed)
 - US and China (UK to some degree) dominating the DE-related medical research (w/ close to a 50% of all articles), followed by Germany, Japan, & Italy
 - Korea being ranked as 8th place; A similar growth rate with other fast-growing countries in the research activity (a low initial level but a very fast growth, a la the log transformation)
- □ The variations observed across the top countries (WOS)
 - The same three countries (US, China, & UK) dominating the DErelated SS research (w/ close to a 50% of all articles), followed by Spain, Italy, and Germany
 - Korea being ranked as 8th place; A reasonably high-growth country

[Data] Distribution of the PubMed articles

																						Country	Count	Rate (%)
Top	2(C		In	tri	ie	S													1	USA	245,185	27.99
		.			A I I																2	China	129,437	14.78
						т	on	20	\mathbf{C}	unt	rioc	by	ort	iclo							3	UK	56,105	6.41
	(By all authors)												4	Germany	47,804	5.46								
								(E	3y a	all a	uth	ors)								5	Japan	35,446	4.05
35.00	07.00																				6	Italy	33,185	3.79
30.00	27.99	1																			7	Canada	26.878	3.07
25.00	T																				8	South Korea	25.676	2.93
≥ 20.00		14.78	3																		9	France	23 591	2.69
10.00									1												10	Australia	22 612	2.58
5.00		4	6.41	5.46	4.05	3.79	3.07	2.93	2.69	2.58	2.41	2.27	1 93	1 77	1 50	4.00					11	Spain	21 102	2.41
0.00													1.00	1.77	1.50	1.06	1.04	0.93	0.88	0.87	12	Netherlands	10 85/	2.27
	USA	China	NK	nany	apan	Italy	nada	orea	ance	tralia	Spain	ands	India	Brazil	rland	iwan	eden	gium	urkey	Iran	13	India	16 965	1.93
		0		Gerr	J		Са	outh K	Ľ	Aus	0)	etherl			witze	μ	Sw	Bel	Ĩ		14	Brazil	15 479	1.77
	1	2	3	1	5	6	7	й х	0	10	11	Z	13	1/	15	16	17	18	10	20	15	Switzerland	12 4 2 2	1.50
	1	2	0	т	0	0	1	0	5	Сог	intry	12	10	- 17	10	10	17	10	15	20	16	Taiwan	0.007	1.06
																					17	Sweden	9,327	1.04
																					18	Belgium	9,089	0.93
																					19	Turkey	8,156	0.88
														37							20	Iran	7,706	0.87
																					Ľ		7,599	0.07

[Data] Growth Patterns, by Country

Growth in Numbers: 10 Countries

[Data] Growth Patterns, by Country (Log Transformation)

Growth in Numbers: Log Transformation

[Data] Distribution of the WOS articles

Corresponding Author's Countries						
	Country	Articles	Freq	SCP	MCP	MCP_Ratio
1	USA	7,010	0.27	5,657	1,353	0.19
2	CHINA	4,314	0.17	2,869	1,445	0.34
3	UNITED KINGDOM	2,132	0.08	1,343	789	0.37
4	SPAIN	1,127	0.04	826	301	0.27
5	ITALY	1,074	0.04	686	388	0.36
6	GERMANY	972	0.04	623	349	0.36
7	AUSTRALIA	779	0.03	471	308	0.40
8	KOREA	704	0.03	526	178	0.25
9	CANADA	691	0.03	464	227	0.33
10	NETHERLANDS	570	0.02	340	230	0.40
SCP: Single Country Publications						
MCP: Multiple Country Publication						

Number of Publication by Country

[Data] The WOS articles

Observation (3): Rising trend of the multi-country collaboration and of the co-authorship

- Average number of authors & the multi-country research collaboration: Both rising continuously
 - About 80% of all WOS articles published in the U.S. journals being MCP (Multi Country Papers), with lower rates for other countries (China ~ 66%)
 - Average number of authors among the WOS articles: 2.5 in 1998 to 4.5 in 2020; Explosive growth of MCP articles from 2015 (same patterns observed from individual countries)
 - The international collaboration patterns by Korean researchers:
 - Mostly with the US authors (over 35%), followed by China, Germany, UK, Japan, & Australia
 - □ Pretty much no collaboration before 2006; Explosive growth since 2016

[Data] Trends of co-authorship & cross-country collaborations

[Data] Distribution of the WOS articles

[Data] Collaboration Pattern (PubMed):

International Collaboration (Korea)

	Country	Count	Rate(%)
1	USA	4,271	35.25
2	China	827	6.83
3	Germany	673	5.55
4	UK	671	5.54
5	Japan	407	3.36
6	Australia	362	2.99
7	Canada	339	2.80
8	Italy	333	2.75
9	India	330	2.72
10	Iran	326	2.69
11	France	243	2.01
12	Spain	238	1.96
13	Netherlands	234	1.93
14	Sweden	219	1.81
15	Singapore	166	1.37
16	Switzerland	166	1.37
17	Pakistan	158	1.30
18	Finland	139	1.15
19	Ethiopia	126	1.04
20	Belgium	114	0.94

[Data] Collaboration Pattern (PubMed):

International Collaboration (Korea)

-	1001 1005	
	1991 ~ 1995	07
	i South Korea	21
_		
	1996 ~ 2000	
:	1 South Korea	68
	2001 ~ 2005	
	2001 2005	204
-	1 South Korea	281
	2006 ~ 2010	
1	South Korea	872
2	2 USA	3
3	3 Japan	2
۵	Canada	1
-		_

Observation (4): Variations across the countreis in the "quality" dimensions

Indicators of the "quality" dimension of the articles

- WOS: The number of citations per article being highest for the US articles (22.1), followed by UK (19.6) and Netherlands (15.2); But fairly low for Korea (9.8) and China (9.8)
- PubMed: Leading countries in terms of the "newness" of the research topics – USA, France, Germany, and Japan (about 23 years' average time lag for MeSH Heading keywords); Longer for Korea (25.7 years) and China (25.3 years)
- Intertemporal trends of the top 10 PubMed MeSH headings (USA vs. Korea): Two surges for USA, only one surge for Korea (from 2016)
- Impact of COVID19 on the PubMed MeSH headings (the last figure)

[Data] Total and average citations (WOS)

Total Citations per Country				
	Country	Total Citations (A)	Number of articles (B)	Average Article Citations (A/B)
1	USA	154,979	7,010	22.11
2	2 CHINA	42,604	4,314	9.88
3	UNITED KINGDOM	41,984	2,132	19.69
4	GERMANY	13,585	972	13.98
5	5 ITALY	13,582	1,074	12.65
6	AUSTRALIA	10,951	779	14.06
7	SPAIN	10,621	1,127	9.42
8	CANADA	8,913	691	12.90
ç	NETHERLANDS	8,684	570	15.24
10	KOREA	6,897	704	9.80

[Data] Newness of the research topics (PubMed)

"Newness" of Topics by MeSH Age

	Country	Sum. (MeSH Age)	Total Count (Article)	Avg. (MeSH Age)
1	Germany	4,067,471	155,373	26.2
2	France	1,854,449	70,681	26.2
3	USA	19,282,407	734,135	26.3
4	Japan	2,998,968	112,909	26.6
5	UK	4,113,648	152,001	27.1
6	Canada	2,069,033	75,999	27.2
7	Switzerland	971,324	35,758	27.2
8	Netherland s	1,507,057	54,966	27.4
9	Italy	2,373,947	85,842	27.7
10	Spain	1,413,584	49,963	28.3
11	Australia	1,525,376	52,812	28.9
12	India	1,147,221	39,614	29.0
13	China	7,153,615	245,107	29.2
14	South Kore a	1,682,656	55,677	30.2
15	Brazil	1,292,673	42,256	30.6

Total MeSH Headings

Major topic of MeSH Headings

Country	Sum. (MeSH Age)	Total Count (Article)	Avg. (MeSH Ag e)
1 USA	2,323,299	101,181	23.0
2 France	219,370	9,372	23.4
3 Germany	470,789	20,003	23.5
4 Japan	303,831	12,863	23.6
5 Italy	258,077	10,711	24.1
6 Switzerland	119,539	4,967	24.1
7 Canada	255,851	10,507	24.4
8 UK	529,376	21,623	24.5
9 Spain	184,541	7,450	24.8
10 Netherlands	169,766	6,806	24.9
11 India	137,596	5,459	25.2
12 China	881,420	34,838	25.3
13 South Kore a	175,603	6,836	25.7
14 Australia	188,267	7,269	25.9
15 Brazil	139,553	5,060	27.6

[Data] Top 10 MeSH Headings & Their Weights (PubMed)

Transition of Digitalization Topic: MeSH Headings

			5515100				
ľ	6	Signal Processing, Computer-A ssisted	Computer Simulation	Models, Biological	Models, Biological	Software	Robotics
	5	Diagnosis, Computer-Assisted	Expert Systems	Signal Processing, Computer-A ssisted	Signal Processing, Computer-A ssisted	Support Vector Machine	Artificial Intelligence
	4	Image Processing, Computer-A ssisted	Algorithms	Robotics	Robotics	Robotics	Deep Learning
	3	Artificial Intelligence	Image Processing, Computer-A ssisted	Artificial Intelligence	Neural Networks, Computer	Artificial Intelligence	Algorithms
ľ	2	Expert Systems	Artificial Intelligence	Algorithms	Artificial Intelligence	Neural Networks, Computer	Neural Networks, Comput er
Ľ	1	Neural Networks, Computer	Neural Networks, Computer	Neural Networks, Computer	Algorithms	Algorithms	Machine Learning
I	Rank	1991-1995	1996–2000	2001-2005	2006-2010	2011-2015	2016-2020

[Data] Top 10 MeSH Headings, Trends (USA)

Digital health research trends: USA (Cont.)

MeshHeading	Algorithms	Artificial Intelligence	Deep Learning	Machine Learning	Models, Theoretical	Neural Networks, Computer	Phylogeny	Robotics	Software	Support Vector Machine		
PmdYear												Top 10 MeSH Headings
1991	0	0	0	0	0	0	0	0	0	0		Machillandina
1993	0	0	0	0	0	1	0	0	0	0	2500	Algorithms
1994	0	0	0	0	0	0	0	0	0	0		Artificial Intelligence
1995	1	0	0	0	0	5	0	0	0	0		Machine Learning
1996	0	0	0	0	2	2	0	0	0	0		Models, Biological
1997	0	0	0	0	0	1	0	1	0	0	2000	Natural Language Processing
1998	0	1	0	0	0	0	0	0	0	0		Robotics
1999	1	0	0	0	0	5	0	0	1	0		Software
2000	0	1	0	0	0	5	0	0	1	0	1500	
2001	3	0	0	0	1	5	0	2	0	0		
2002	3	1	0	0	1	5	0	0	0	0		
2003	2	1	0	0	2	3	0	0	0	0	1000	o -
2004	11	7	0	0	1	4	0	1	2	0		
2005	22	15	0	0	0	7	0	1	3	0		
2006	13	17	0	0	1	7	0	2	2	0	500	
2007	29	20	0	0	5	9	0	6	6	0	500	
2008	26	25	0	0	5	13	0	4	2	0		
2009	21	20	0	0	4	13	0	18	0	0		
2010	15	12	0	0	4	12	0	22	2	0	0	0 1991 1996 2001 2006 2011 2016
2011	18	12	0	0	3	12	0	35	4	2		PmdYear
2012	12	7	0	0	2	9	1	33	3	7		
2013	27	17	0	0	3	9	0	29	1	7		
2014	27	17	0	2	8	7	1	22	1	5		
2015	23	8	0	12	4	15	0	13	4	11		
2016	12	3	0	18	5	18	0	13	3	4		
2017	14	2	5	33	6	42	5	7	3	10		
2018	23	7	39	55	5	60	5	12	6	7		
2019	31	6	94	82	9	95	16	14	13	9		
2020	20	20	69	47	4	49	38	6	6	4		

[Data] Top 10 MeSH Headings, Trends (Korea)

Digital health research trends: Korea (Cont.)

MeshHeading	Algorithms	Artificial Intelligence	Deep Learning	Machine Learning	Models, Theoretical	Neural Networks, Computer	Phylogeny	Robotics	Software	Support Vector Machine		
PmdYear												Top 10 MeSH Headings
1991	0	0	0	0	0	0	0	0	0	0		Machillan dian
1993	0	0	0	0	0	1	0	0	0	0		Algorithms
1994	0	0	0	0	0	0	0	0	0	0	350	Artificial Intelligence
1995	1	0	0	0	0	5	0	0	0	0		Machine Learning
1996	0	0	0	0	2	2	0	0	0	0	300	00 Models, Theoretical
1997	0	0	0	0	0	1	0	1	0	0		Neural Networks, Computer
1998	0	1	0	0	0	0	0	0	0	0	250	50 - Robotics
1999	1	0	0	0	0	5	0	0	1	0		Software
2000	0	1	0	0	0	5	0	0	1	0	200	
2001	3	0	0	0	1	5	0	2	0	0	200	
2002	3	1	0	0	1	5	0	0	0	0		
2003	2	1	0	0	2	3	0	0	0	0	150	50 -
2004	11	7	0	0	1	4	0	1	2	0		
2005	22	15	0	0	0	7	0	1	3	0	100	10 -
2006	13	17	0	0	1	7	0	2	2	0		
2007	29	20	0	0	5	9	0	6	6	0	50	50 -
2008	26	25	0	0	5	13	0	4	2	0		
2009	21	20	0	0	4	13	0	18	0	0	0	
2010	15	12	0	0	4	12	0	22	2	0	0	1991 1996 2001 2006 2011 2016
2011	18	12	0	0	3	12	0	35	4	2		PmdYear
2012	12	7	0	0	2	9	1	33	3	7		
2013	27	17	0	0	3	9	0	29	1	7		
2014	27	1/	0	2	8	/	1	22	1	5		
2015	23	8	0	12	4	15	0	13	4	11		
2016	12	3	0	18	5	18	0	13	3	4		
2017	14	2	20	33	0	42	5	1	3	10		
2018	23	6	39	00	0	00	10	12	10	1		
2019	20	0	94	02	9	95	01	14	13	9		
2020	20	20	09	47	4	49	30	0	0	4		

[Data] Top 10 MeSH Headings, Impact of COVID19

COVID-19 shock: Overall

2019

Rank	Mesh Headings	Count
1	Machine Learning	1,773
2	Neural Networks, Computer	1,697
3	Deep Learning	1,211
4	Algorithms	811
5	Artificial Intelligence	523
6	Robotics	399
7	Software	334
8	Natural Language Processing	260
9	Support Vector Machine	250
10	Electronic Health Records	212
11	Models, Biological	208
12	Magnetic Resonance Imaging	205
13	Models, Theoretical	198
14	Image Processing, Computer-Assisted	186
15	Phylogeny	180
16	Gene Expression Profiling	174
17	Transcriptome	169
18	Signal Processing, Computer-Assisted	164
19	Computer Simulation	162
20	Computational Biology	150

2020

Rank	Mesh Headings	Count
1	Machine Learning	1,088
2	Neural Networks, Computer	1,007
3	Deep Learning	840
4	Artificial Intelligence	499
5	Algorithms	444
6	Pandemics	236
7	Robotics	221
8	Phylogeny	219
9	Betacoronavirus	206
10	Software	186
11	Coronavirus Infections	144
12	Pneumonia, Viral	140
13	Telemedicine	136
14	Support Vector Machine	127
15	Image Processing, Computer-Assisted	112
16	Dental Implants	109
17	Magnetic Resonance Imaging	102
18	Natural Language Processing	101
19	COVID-19	97
20	Mobile Applications	93

Findings from the Meta Analyses: A Summary

- Outcomes from "the science of science" analyses:
 - An explosive growth of the DE-related articles from around 2015 (both for WOS & for PubMed)
 - "Quantity" of DE-research being dominated by three (US, China, & UK); Korea being reasonably high-ranked (8th in both)
 - Rapid and continuous growth in co-authorship and multicountry research collaborations (for both DBs, MCP papers 1)
 - "Quality" of DE-research being dominated by a different group of countries (US, Germany, France, UK, Japan); Korea and China being lagged in this dimension (for WOS & PubMed)

Policy Implications (& Policy Tasks, PT)

The DE-Related Policy Initiatives in Korea

- Various DE-related Policy Initiatives being implemented in Korea during the last several years
 - Three data legislations (19), for use & protection of personal data
 - Data Exchanges (20), MyData (21), OpenData (on-going)
 - 'Digital New Deal' (20 for V-1.0 and 21 for V-2.0)
 - SmartCity, SmartFarm, and other Smart X initiatives (on-going)
- □ What do the meta analyses performed imply in initiating those policies? → Several policy tasks to be discussed subsequently

PT (1): A cross-sectoral & interdisciplinary approach needed (in Korea)

- In promoting the DE-ecosystem in Korea, a crosssectoral approach being needed
 - A big sectoral difference being observed; "Finance" being the most active sector in fostering DE-ecosystem (w/ Data Exchanges and MyData having implemented) → A cross-sectoral policy (e.g., anonymication, API, analytics, & other standards setting) being needed
 - Categorizing digital data, and setting a customized strategy (e.g., (1) public data to share with everyone, (2) common data to share within a network, and (3) private data to exchange with price)
 - A more result-oriented DE policies to be initiated (e.g., the "All of US" project in the US for medical research)

[Data] The Multi-Sectoral 'MyData' Initiatives in Korea

✤ 분야별(금융, 의료 등) 허브(hub, 관문)를 통한 본인정보 제공·유통 및 상호연계

Source: MSA (2020)

https://allofus.nih.gov

The Precision Medicine Initiative Cohort Program – Building a Research Foundation for 21st Century Medicine

2021-12-2

SKKU Seminar

출처: 강건욱 (2020)

Table 2. Scientific Goals of the All of Us Program	n and Expected	Timelines.*			
Goal			Years		
	End of 2018 (N = 94,000)	End of 2019 (N=>200,000)	2020–2022 (N=<650,000)	2023–2027 (N=>1 million)	After 2027 (N=>1 million)
Return data to participants	+	+	+++	+++	++++
Establish demonstration projects†		+	+++	+	+
Discover genetic and environmental correlates with disease			++	+++	++++
Improve predictions of therapeutic safety and efficacy			++	+++	+++
Discover disease biomarkers			++	++++	+++
Connect mobile health, digital health, and sensor data with clinical outcomes			++	+++	+++
Develop new disease classifications			+	+++	++++
Support clinical trials			+	++++	+++
Enable machine-learning applications			++	+++	++++
Improve understanding of health disparities			++	+++	+++
Develop and test new therapeutic agents					++

* The expected number of participants in the cohort is shown for each time period. The number of plus signs in each cell indicates the anticipated relative degree to which each goal may be accomplished during the estimated timeline for focused research.

† Demonstration projects are scientific studies implemented by the All of Us program to show the quality, usefulness, validity, and diversity of the All of Us research data set and platform. In these projects, the population and data are further characterized, and the data are evaluated with a view to determining whether known associations can be replicated.

출처: 강건욱 (2020)

N Engl J Med 2019; 381:668-676

PT (2): An interdisciplinary research and PPAP to be promoted

- For the purpose of developing an effective DEecosystem, an interdisciplinary research and PPAP (Public·Private·Academic·Partnership) to be promoted
 - A good supply of well-trained specialists being essential in promoting DE-ecosystem
 Develop interdisciplinary data science programs (schools or training programs) to create regional innovation clusters
 - Integration of academia with public & private sectors to enhance the socio-economic effects of DE-ecosystem (e.g., "Bristol is Open" in UK as an example PPAP case; and "EU Replicate" programs for the regional SmartCity initiatives)

PT (3): Promoting data- & evidence-based decision makings

- In all three sectors, promote data- & evidence-based decision makings by utilizing DE-ecosystem
 - Finance: A more efficient & real time credit risk management (by using alternative data, AI-enabled analytics, and so on) → A more accurate consumer segmentation and expansion of financial inclusion (e.g., to marginal borrowers, "thin filers")
 - Real estate: A more transparent RE market data (e.g., RE price indices); Reducing search and information cost via RE platforms (the political economy issues to be addressed, more active role by the government in promoting DE)
 - Medical service: A more active utilization of one's own medical data (& linking that to MyHealthway); Via medical data and new analytics, promoting more innovations in medical services

PT (4): Promoting and regulating the new inter-sectoral business

- Defining the new industrial boundaries (e.g., conventional banks vs. BigTechs)
 - The traditional industrial boundaries being blurred more and more (Rising roles of BigTechs such as Google," Amazon, Ant Financial, PingAn Insurance, and Kakao)
 - More efficient and convenient services provided by the Smart X industries (e.g., FinTech firms "Banking is necessary but banks are not!" & "Is bank still special?")
 - Need to have a LT development strategy for existing service providers and DPA-enabled Smart X service providers as to how to regulate and promote their mutual welfare gains

Affiliated companies	Description & key business area
Alibaba.com	The leading wholesale marketplace for global trade
1688.com	The leading integrated domestic wholesale market place in China
Alibaba Cloud	A cloud computing service provider
AliExpress	A global retail e-commerce platform
Alimama	A marketing technology platform
Taobao.com	The China's largest mobile commerce platform
TMALL.com	The China's largest B2C platform
Cai Niao	A logistics data platform operator
Ant Finanial	A technology company offering inclusive financial services
Financial Group	H教全服
ffiliated companies	Description & key business area

	-							
	AUDer	A mobile payment platform with 520m+ users, and business partners						
	AllPay	across over 15 countries						
	Va'a Pac	The largest money market fund in the world,						
	Iu e Dao	managing \$221b						
	Ant Fasters	MPL for Ant Financial and third-party financial products,						
	Ant Fortune	with 180m users.						
	Ant Turning Coming	An insurance service firm with 400m users, offering its own						
	Ant insurance Service	and 80+ insurance companies' products.						
	7hims (Course) Court	A credit scoring company, using social networks and payments history						
	Zimina (Sesame) Credit	with about 260m users.						
	Ant Cash Now	A credit company for quick funding for AliPay users,						
		based on user risk profiles.						
0.001 - 1.0	1.00 E.D.	A consumer lending company with 100m active users,						
	Ant Credit Pay	1						

having lent \$95b to consumers through Q1'17.

PT (5): Linking DE-ecosystem to Smart X (for job creation and regional development)

- Increasing the social effects of DE-ecosystem by explicitly linking it to Smart X initiaties
 - For both job creation and regional development, link local DEecosystem to SmartCity, SmartFarm, SmarkMedicalService, and other Smart X initiatives
 - Promote DE related policies to enhance area-specific regional development policies, by benchmarking the good PPAP cases as well as by explicitly relating them to local job creation (for balanced regional development)
 - Initiating more "result-oriented" DE policies (e.g., job creation); And monitoring their progresses periodically (e.g., measuring social BC for DE- and Smart X-related policy initiatives)

Concluding Remarks

Concluding Remarks

- What's been done?
 - A tri-sectoral study to gauge the current states in developing a DE-ecosystem along with policy tasks needed
 - Findings from the literature review and the meta analyses being shared; Policy implications & tasks also being discussed
- □ What's to be done (i.e., future research agenda)?
 - Developing KPIs (e.g., Indices for policy uncertainty, & digitaliz.)
 - Analyzing & strategizing local DE-ecosystem (including a more meaningful classification system for local economies)
 - Relating DE-ecosystem to local housing & labor market outcomes

Thank you!