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Abstract

The main objective of this research is to conceptualize the term “data economy (DE),” and, further, to
examine the issue of how to operationalize that in three particular service sectors in Korea — finance,
real estate, and medical service through an international comparison. To that end, we surveyed the
recent studies of relevancy, and also performed the meta-analyses by utilizing two sets of the DE-
related academic studies in the three sectors that are extracted from two international databases:
263,974 articles on the health and medical services from PubMed established by the National Institute
of Health in the U.S.; and, 26,859 articles on the finance and real estate from the Web of Science. Our
results show that: DE is defined as an ecosystem that can enhance social welfare in a national or
regional level through accumulating-sharing-analyzingeutilizing digital data; Its three core elements
include a DPA(Data<PlatformeAl) based infrastructure along with institutional and market driven
stimulators; Its expected socio-economic effects as argued in the literature are categorized into three
types - (1) the platform effect, (2) the predictive power effect, and (3) the new analytics effect. And the
results of the meta-analyses indicate that: The number of academic studies on DE related to the three
sectors has been in an explosive growth path since around 2015; The co-authorship and the inter-
country collaboration have also been increasing steadily; As to the outcomes achieved by the Korean
researchers, the country fairs reasonably well in terms of quantity (ranked as 8™ place for both
databases) but tends to lag in terms of quality (the average number of citations, and the newness of
topics). Using the above results, several policy implications are discussed.
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Introduction




Digital Transformation (DT):
The governmental responses

[1 Strategizing the economic social development in
response to the on-going DT trend
B USA: The OPEN Government Data Act of 2019 (initiating
OpenData initiative & Data.gov

B China: The plan for developing BigData industry (2017), &
developing the Data Exchange

B EU: The EU data privercy directive (EU GDPR, 2018); Initiating
GAIA-X project, to activate ‘data economy’ (2018)

B Japan: Reform for Society 5.0 (2017) ~ to establish the institutional
base for data economy and manpower development plan

B UK: The UK Digital Strategy (2017), and the national data strategy
(2020)

2021-12-2 SKKU Seminar 6



Digital Transformation (DT):
Its impact on the global industry

The dynamic re-structuring of the global
iIndustrial structure

B Change of the global top 10 companies (2007~2017)

B Rise of the US & Chinese global companies, but
decline of the European big corporations

[0 Changes in the top 100 global firms (last 20 years): US ~
50 —» 61; China ~ 0 - 15; Europe ~ 41 - 15 (no change
for the Korean & Japanese companies)

[0 Trend of the global GDP: US ~ 24% (in 2020); China ~
18%; Europe ~ 34% — 25% (btw 2000-2020)

[0 The creative destruction processes being initiated by the

US & Chines companies backed by Data-PlatformeAl
(DPA) = To be termed as the DE-enabled industry
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The global top 10 companies

(Change in 2007~2017)
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Research Questions

[0 How can we conceptualize ‘Data Economy’ (i.e., its definition,
elements, market and institutional enablers, and so on)?

[0 What are its expected socio-economic outcomes, in the cases
of three particular service sectors in Korea (i.e., finance, real
estate, and medical service)?

[0 What trends do we observe from the academic research
communities (related to the above sectors) as to DE?

[0 What policy implications can we draw from the analyses on the
above question, in particular, for Korea?
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Conceptualizing Data Economy (DE)




Data Economy: What is it?

[0 Data Economy: Definition
B Aninnovation ecosystem that generates socio-economic values by
efficiently distributing or trading digital data

“A (global) digital ecosystem in which data is gathered, organized, and exchanged
by a network of vendors for the purpose of deriving value from the accumulated

information” (European Commission (2018))

[0 Data Economy: Key elements
B |nput: To accumulate & share digital data (BigData*Cloud*API<DLT)

B Thruput: To make data-driven innovations possible (Al & data
analytics, ML & DL)

B Output: To increase social welfare with the data-driven innovations
B Plus various market and institutional “enablers”
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A Basic Structure of Data Economy
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The DE-based Innovation Sectors

]
[0 The DE-based innovation sectors

B Manufacturing: SmartFactory, SmartFarm, Driverless Car

B Service, private: Digital health (e.g., online medical service),
FinTech & InsurTech, PropTech

B Service, public: SmartCity, Open Government

[0 Several cases of the DE- (or DPA-) based innovation
B ZOPA (Zone of Possible Agreement)
B Online credit evaluation by P2P lenders
B SmartHome and prevention of Alzheimer disease
B InsurTech and financial inclusion
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=m) ZONe Of Possible Agreement;

(a negotiating term identifying the bounds within which
agreement can be reached between two parties)

Seller Walks Away Seller's Desired Price

Seller's Range

Buyer’s Range

Buyver's Desired Price Eryper Walks dvway
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2021-12-2 SKKU Seminar 15



[&

11] FinTech loan production process

(the case of Lending Club)

Borrower If they meet If verification
initial regquired Receives to-do list
ﬂ"“I““ :ﬁ qualifications Completes online | items, such as
ekl - _ Chooses from list —— loan appl providing proof of
.d"'k of offers : r . . income
Borrower notified
Borrower receives loan if loan approved |
in bank account \
| l
LendingClub  Determines initial Determines if
. eligibility information needs to Reviews application
immediately be verified ~  and approves or
denies loan
Loan dispersed to
borrower Provide information to
WebBank to originate loan
WebBank holds loan for 2 Finds investor for Assigns grading to
days and sells back to LC loans determine pricing
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InsurTech & Auto/Health Insurance
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DE: Its Expected Social Effects




Socio-economic Effects of DE
(from the Global Research Community)

[1 The rising trend of academic research on DE during the last
several years = Three main socio-economic effects of DE

1. Platform effect
2. Prediction power effect

3. New (data) analytics effect
[0 Key arguments being summarized in the subsequent slides
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1. Platform effect of DE

WWW (1989) & smart phone (2007) = Exponential growth
of internet-mobile platforms, resulting in:
B Dramatic reduction in transaction cost (TC)

B Rise in digital data via online transactions (on consumer behavior)

Implications to the three sectors

B Finance: Rise of “disintermediation” (Fuster et al. (2020), Cho
(2020), Philippon (2015) and (2016))

B Real estate: The sector with high search cost; Rise of PropTech —
TCJl (Baum (2017))

B Medical service: Rise of remote/inhouse medical service via
platform - TCJ{ (Oh (2020), Kang (2020))
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[Data] Traditional & FinTech-based
Financial Intermediation

i S - ;
I ! I v
| Debter/ |, Bank . ' _| Risk/maturity Saver/
| Consumer : transformer Investor
| 'y :
| | , !
l | '
| | ' |
7 ! |
: \ kl * I 1
: Use of |, FinTech | 1 1
| fund Servicer |
| l
e e e e e e e e e e e e e e e e ]
Z: Cho (2020)
2021-12-2 SKKU Seminar 22




2. Predictive power effect of DE

|
[0 Accumulate-shate-utilize digital data =» Predictive power for

optimal technology or business model (Farboodi/ Veldkamp
(2021))

@ Digital datat™ - “MSE” in predicting optimal technology ! - Quality-
adjusted productiont (individual firms)

2@ Market-wide DE effect: Generally decreasing returns to scale (DRS);
But IRS for start-ups & for the state of low data accumulation

® MSE/! vs. Technology frontier(game changer)t ~ Another DE effect

[0 Related micro & macro DE effects

B DE effect in predicting business cycles (Ordonez (2013), Fajgelbaum
et al. (2017)), productivity growth rates (Agrawal et al. (2018))

B Reduction in user cost of capital (Begenau et al. (2018)), and in the
role of collateral in the lending sector (Gambacorta et al. (2020))
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[Data] Key arguments by
Farboodi/Veldkamp (2021)

() yir =A;¢- kic,xt
(2) A = A — (ai,t — 0, — Sa,i,t)z

y: Quality-adjusted output (firm i time t), per k units of capital

A: Technology-driven quality (of goods/services produced); A bar ~ technology
frontier (time and firm invariant); a ~ the firm’s production technology choice

O, &: Persistent and transitory components of the technology (6,+¢,;,); 6 ~ AR(1)
process with a random innovation

The role of data: Helping firms to choose better production techniques, i.e.,
reducing the prediction error ¢, ;, such that yt for given levels of factors (k, I) or
new and improved business models or processes

Three key features of data: 1) Data is a by-product of economic activity; 2) data
is information used for prediction, and 3) uncertainty reduction enhances firm
profitability

More fundamental data-driven innovation (i.e., game changer): Shifting the
technology frontier (A bar)!
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[Data] Key arguments by
Farboodi/Veldkamp (2021) (cont'd)

0 Diminishing returns for a data-accumulation economy: Over time, the aggregate
stock of knowledge and aggregate amount of output would have a time path that
resembles the concave path in Figure 2 (Without idea creation, data
accumulation alone would generate slower and slower growth =» the Solow’s
growth path)

[0 Increasing returns to scale (the data feedback loop): A firm with more data
produces higher-quality goods, which induces them to invest (on data) more,
produce more, and sell more = Causing aggregate knowledge accumulation to
accelerate.

B Diminishing returns always dominate when data is abundant; But when firms are

young, or data is scarce, increasing returns can be strong enough to create an
increasing rate of growth.

[0 Implications to our three sectors

| Medical service: Data-driven innovations in developing new & better medicines or
more efficient (and more preventive) curing methods

B  Financial service: Data-driven innovations in developing more efficient (& accurate)
risk-assessment and decision makings (underwriting — or segmentation, pricing, and
hedging) and more welfare-enhancing financial products or service processes

| Real estate industry: Similar data-driven innovations as in finance (e.g., real estate
FinTech); Other real estate specific innovations (SmartHome, RE-share economy,

smart construction, and so on)
2021-12-2 SKKU Seminar 25



[Data] Key arguments by
Farboodi/Veldkamp (2021) (cont'd)

Precision Units

| |Data Purchases
m— Outflows

= |nflows
= =Data Production
@® Steady State

Stock of Knowledge ({1)

Figure 3: New firms grow slowly: inflows and outflows of data of a single firm.

Line labeled inflows plots the individual firm i version of the quantity in equation (10), that makes an optimal capital
decision k] ; and data decision 4] ,, with different levels of initial data stock. This firm 1s in an economy where all
other firms are in steady state. Line labeled outflows plots the individual firm i version of the quantity in (11). Data
production is z;k?,*o 2, which is inflows without the data purchases &, ,.
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2. Predictive power effect of DE (cont'd)

[1 Implications to the three sectors

B Medical: Accumulation-utilization of medical data = New medical
procedures & medicine via R&D 1

B Finance: Efficiency in risk measurement & mgt. (e.g., FinTech)t
@ In measuring systematic & idiosyncratic risks; In credit evaluation
@ Use of alternative data (e.g., "digital footprint”) (Berg et al. (2018) &)
= Information asymmetryl, & financial inclusion’]
B Real Estate: RE FinTech vs. non-finance PropTech
[0 Non-finance RE: Shared economy; SmartConstruction (MSE | )

[0 RE market transparency/: “Optimal” price indices (on the
methodologies, serial and cross-sectional aggregations)
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3. New (data) analytics effect of DE

[0 Explosive growth of the Al-based data analytics

B The Al transition (algorithms — Machine Learning (ML) - Deep
Learning(DL)): Being accelerated during the last five years

B Enabling the use of non-conventional data (e.g., measuring economic
activity via satellite pictures, classifying industries via tax filings)

B A new family of analytics (e.g., regression trees, LASSO, random
forests, ensemble) & the enabling software (e.g., R, Python)

B Key implications (Mullainathan/Spiess (2017)): (1) Focusing on
predicting dependent variable (y hat) rather than beta; (2)
Machine- learning on numerous interactions & splines among x
variables; (3) Relying on out-of-sample model performance tests

~
A

y=fx+e->y=0f-x+¢§
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The Meta Analyses Performed




The Meta Analyses: The DB compiled

[0 PubMed article Bibliography Data (medical science)

B Keywords - Artificial Intelligence, Machine Learning, Digitalization, Digital
Health (linked with “or”); Publication Date - 1862-2020

B Data Cleaning (written in English, published in 1991 or later, and so on):
263,974 articles included (1991-2020)

[0 Web of Science, WOS (finance, real estate, and related social

science disciplines)

B Keywords — FinTech (& its variations), PropTech, Data Economy, Big Data,
Al, ML, DL, Digitalization ((linked with “or”)

B Scope of the journals — Selected among SSCI and some inter-disciplinary
journals

B Result - 26,859 articles included (1978~2022)
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Observation (1): Explosive growth of the related
research since around 2015

PubMed articles (medical science): Frequency of the articles
having explosive growth since around 2015

B Two inflexion points globally — one around 2003 & another around
2015; Korea — only one around 2015

B The internet (www) based innovations would have been more
prevalent in the US and UK (further investigation needed)

WQOS articles (finance and RE):

B Only one pronounced inflexion point around 2015, and an explosive
growth since then

B The social science research would be lagging that of natural
science; The applied research (finance & RE) would be lagging the
industry (i.e., research follows FinTech & PropTech)
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[Data] Frequency of the PubMed articles
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Observation (2): Dominance in research by three
countries — US, China, and UK

[l The variations observed across the top countries (PubMed)

B US and China (UK to some degree) dominating the DE-related
medical research (w/ close to a 50% of all articles), followed by
Germany, Japan, & ltaly

B Korea being ranked as 8™ place; A similar growth rate with other
fast-growing countries in the research activity (a low initial level but
a very fast growth, a la the log transformation)

[1 The variations observed across the top countries (WOS)

B The same three countries (US, China, & UK) dominating the DE-
related SS research (w/ close to a 50% of all articles), followed by
Spain, ltaly, and Germany

B Korea being ranked as 8t place; A reasonably high-growth country
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[Data] Distribution of the PubMed articles
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Number of Articles

[Data] Growth Patterns, by Country

Growth in Numbers: 10 Countries
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[Data] Growth Patterns, by Country (Log Transformation)

|
Growth in Numbers: Log Transformation
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[Data] Distribution of the WOS articles

Corresponding Author's Countries

Country
1 USA
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3UNITED KINGDOM
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Observation (3): Rising trend of the multi-country
collaboration and of the co-authorship

[1 Average number of authors & the multi-country research
collaboration: Both rising continuously

B About 80% of all WOS articles published in the U.S. journals being
MCP (Multi Country Papers), with lower rates for other countries
(China ~ 66%)

B Average number of authors among the WOS articles: 2.5 in 1998 to
4.5 in 2020; Explosive growth of MCP articles from 2015 (same
patterns observed from individual countries)

B The international collaboration patterns by Korean researchers:

0 Mostly with the US authors (over 35%), followed by China, Germany,
UK, Japan, & Australia

[0 Pretty much no collaboration before 2006; Explosive growth since 2016
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[Data] Most Productive Countries (WOS), SCP vs. MCP
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[Data] Trends of co-authorship &
cross-country collaborations
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[Data] Distribution of the WOS articles

Number of Pulblication by Country

Single vs Multiple authorship
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[Data] Collaboration Pattern (PubMed):

International Collaboration (Korea)

Top 20 countries that Korea
collaborates with
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Country

Country Count Rate(%)
1 JUSA 4,271 | 35.25
2 [China 827 6.83
3 |[Germany 673 5.55
4 [UK 671 5.54]
5 Papan 407 3.36
6 |Australia 362 2.99
7 |Canada 339 2.80]
8 [italy 333 2.75
9 [India 330 2.72
10 [Iran 326 2.69
11 |France 243 2.01
12 [Spain 238 1.96
13 [Netherlands 234 1.93
14 [Sweden 219 1.81
15 [Singapore 166 1.37
16 |Switzerland 166 1.37
17 |Pakistan 158 1.30
18 [Finland 139 1.15
19 |[Ethiopia 126 1.04
20 |Belgium 114 0.94
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[Data] Collaboration Pattern (PubMed):

International Collaboration (Korea)

1991 ~ 1995 2011 ~ 2015 2016 ~ 2020
1 USA 389 1 USA 3,830
I South Korea 27 2 China 109 2 China 688
3 UK 51 3 Germany 621
4 Japan 40 4 UK 618
5 Germany 39 5 Japan 354
1996 ~ 2000 6 ltaly 34 6 Australia 341
1 South Korea 68 7 Spain 32 7 lIran 324
8 Australia 21 8 Canada 323
9 Canada 20 9 India 308
10 France 12 10 Italy 278
11 Belgium 11 11 France 230
2001 ~ 2005 12 Czech Republic 9 12 Netherlands 227
1 South Korea 281 13 India 9 13 Sweden 215
14 Malaysia 9 14 Spain 202
15 Pakistan 9 15 Switzerland 161
16 Netherlands 7 16 Singapore 154
2006 ~ 2010 17 Taiwan 7 17 Pakistan 149
1 South Korea 872 18 Austria 6 18 Finland 132
2 USA 3 19 Greece 6 19 Ethiopia 126
3 Japan 2 20 Poland 6 20 Belgium 102
4 Canada 1 21 Singapore 6 21 Poland 102
22 Luxembourg 4 22 Portugal 102
23 New Zealand 4 23 Brazil 100
24 Portugal 4 24 Taiwan 82
25 Sweden 4 25 Denmark 79
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Observation (4): Variations across the countreis
in the “quality” dimensions

[1 Indicators of the “quality” dimension of the articles

B WOS: The number of citations per article being highest for the US
articles (22.1), followed by UK (19.6) and Netherlands (15.2); But
fairly low for Korea (9.8) and China (9.8)

B PubMed: Leading countries in terms of the “newness” of the
research topics — USA, France, Germany, and Japan (about 23
years’ average time lag for MeSH Heading keywords); Longer for
Korea (25.7 years) and China (25.3 years)

B Intertemporal trends of the top 10 PubMed MeSH headings (USA
vs. Korea): Two surges for USA, only one surge for Korea (from
2016)

B Impact of COVID19 on the PubMed MeSH headings (the last
figure)
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[Data] Total and average citations (WOS)

Total Citations per Country

Country
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[Data] Newness of the research topics (PubMed)

I
“Newness” of Topics by MeSH Age

Total MeSH Headlings
Avg.
Sum. Total Count

Country . (MeSH

(MeSH Age)  (Article) Age)
1 Germany 4,067,471 155,373 26.2
2 France 1,854,449 70,681 26.2
3 USA 19,282,407 734,135 26.3
4 Japan 2,998,968 112,909 26.6
5 UK 4,113,648 152,001 271
6 Canada 2,069,033 75,999 27.2
7 Switzerland 971,324 35,758 27.2
8 Sethe”a”d 1,507,057 54,966 27.4
9 ltaly 2,373,947 85,842 27.7
10 Spain 1,413,584 49,963 28.3
11 Australia 1,525,376 52,812 28.9
12 India 1,147,221 39,614 29.0
13 China 7,153,615 245,107 29.2
14 20“”“ Kore 4 680656  55.677 30.2
15 Brazil 1,292,673 42,256 30.6

Major topic of MeSH Headings

Avg.

oy Shce) o MeSH Ao
1 USA 2,323,299 101,181 23.0
2 France 219,370 9,372 03.4
3 Germany 470,789 20,003 23.5
4 Japan 303,831 12,863 23.6
5 ltaly 058,077 10,711 241
6 Switzerland 119,539 4,967 24.1
7 Canada 055,851 10,507 04.4
8 UK 529,376 21,623 24.5
9 Spain 184,541 7,450 24.8
10 Netherlands 169,766 6,806 24.9
11 India 137,596 5,459 05.2
12 China 881,420 34,838 25.3
13 ioum Kore 175,603 6,836 25.7
14 Australia 188,267 7,269 25.9
15 Brazil 139,553 5,060 07.6
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[Data] Top 10 MeSH Headings & Their Weights (PubMed)

Transition of Digitalization Topic: MeSH Headings

Top 10 MeSH Headings by 5-year
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[Data] Top 10 MeSH Headings, Trends (USA)

Digital health research trends: USA (Cont.)
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[Data] Top 10 MeSH Headings, Trends (Korea)

Digital health research trends: Korea (Cont.)
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[Data] Top 10 MeSH Headings, Impact of COVID19

COVID-19 shock: Overall

2019
Rank Mesh Headings Count
7/ |Machine Learning 1,773
2 [Neural Networks, Computer 1,697
3 |Deep Learning 1,211
4 JAlgorithms 811
5 |Artificial Intelligence 523
6 [Robotics 399
/7 |Software 334
& |Natural Language Processing 260
9 |[Support Vector Machine 250
70 |Electronic Health Records 212
77 |Models, Biological 208
72 |Magnetic Resonance Imaging 205
73 [Models, Theoretical 198
74 |lmage Processing, Computer—Assisted 186
75 |Phylogeny 180
76 |Gene Expression Profiling 174
77 |Transcriptome 169
78 |Signal Processing, Computer—Assisted 164
79 |Computer Simulation 162
20 |[Computational Biology 150

2020
Rank Mesh Headings Count
7 [Machine Learning 1.088
2 [Neural Networks, Computer 1.007
3 |Deep Learning 840
4 )Artificial Intelligence 499
5 |Algorithms 444
6 |Pandemics 236
/7 |Robotics 221
& |Phylogeny 219
9 |Betacoronavirus 206
70 |Software 186
77 |Coronavirus Infections 144
72 |Pneumonia, Viral 140
13 [Telemedicine 136
74 |Support Vector Machine 127
715 |Image Processing, Computer—Assisted 112
76 |Dental Implants 109
77 [Magnetic Resonance Imaging 102
78 [Natural Language Processing 101
79 |COVID-19 97
20 [Mobile Applications 93
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Findings from the Meta Analyses:
A Summary

[0 Outcomes from “the science of science” analyses:

B An explosive growth of the DE-related articles from around
2015 (both for WOS & for PubMed)

B “Quantity” of DE-research being dominated by three (US,
China, & UK); Korea being reasonably high-ranked (8" in both)

B Rapid and continuous growth in co-authorship and multi-
country research collaborations (for both DBs, MCP papers1)

B “Quality” of DE-research being dominated by a different group
of countries (US, Germany, France, UK, Japan); Korea and
China being lagged in this dimension (for WOS & PubMed)
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Policy Implications
(& Policy Tasks, PT)




The DE-Related Policy Initiatives in Korea

[1 Various DE-related Policy Initiatives being implemented
iIn Korea during the last several years
B Three data legislations (19), for use & protection of personal data
B Data Exchanges (20), MyData (21), OpenData (on-going)
B ‘Digital New Deal’ (20 for V-1.0 and 21 for V-2.0)
B SmartCity, SmartFarm, and other Smart X initiatives (on-going)

[1 What do the meta analyses performed imply in initiating
those policies? = Several policy tasks to be discussed
subsequently
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PT (1): A cross-sectoral & interdisciplinary
approach needed (in Korea)

1 In promoting the DE-ecosystem in Korea, a cross-
sectoral approach being needed

B A big sectoral difference being observed; “Finance” being the
most active sector in fostering DE-ecosystem (w/ Data
Exchanges and MyData having implemented) = A cross-
sectoral policy (e.g., anonymication, API, analytics, & other
standards setting) being needed

B Categorizing digital data, and setting a customized strategy (e.g.,
(1) public data to share with everyone, (2) common data to share
within a network, and (3) private data to exchange with price)

B A more result-oriented DE policies to be initiated (e.g., the “All of
US” project in the US for medical research)
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[Data] The Multi-Sectoral ‘MyData’
Initiatives in Korea
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Source: MSA (2020)

2021-12-2 SKKU Seminar 59



AI I u m) National Institutes of Health
@f s Turning Discovery Into Health
Q” v

RESEARCH PROGRAM

https://allofus.nih.gov

The Precision Medicine Initiative Cohort
Program - Building a Research
Foundation for 21st Century Medicine
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Table 2. Scientific Goals of the All of Us Program and Expected Timelines.*

Goal Years
End of 2018 End of 2019 2020-2022 2023-2027 After 2027
(N=94,000) (N=>200,000) (N=<650,000) (N=>1milion) (N=>1 million)

r __________________________________________
Return data to participants + + - e+ e }
E_staFIisi d:m:nsTramm_pro_jecTsT_ Tt T 0 0= : _____ + 4: _____ £ = + -
Discover genetic and environmental correlates -- +++ B

with disease
Improve predictions of therapeutic safety - 4 i
and efficacy
Discover disease biomarkers ++ e Foery
Connect mobile health, digital health, and ++ 44+ Y
sensor data with clinical outcomes
Develop new disease classifications + 4+ s
Support clinical trials + +H+ +++

r _pE ________________________________________ 1

L Enable machine-learning applications .- s +H++ l
Improve understanding of health disparities - e s
Develop and test new therapeutic agents ++

* The expected number of participants in the cohort is shown for each time period. The number of plus signs in each cell indicates the antici-
pated relative degree to which each goal may be accomplished during the estimated timeline for focused research.

1 Demonstration projects are scientific studies implemented by the All of Us program to show the quality, usefulness, validity, and diversity of
the All of Us research data set and platform. In these projects, the population and data are further characterized, and the data are evaluated
with a view to determining whether known associations can be replicated.

E*]: 275 (2020)

N Engl J Med 2019; 381:668-676



PT (2): An interdisciplinary research and
PPAP to be promoted

[1 For the purpose of developing an effective DE-
ecosystem, an interdisciplinary research and PPAP
(Public-Private-Academic-Partnership) to be promoted

B A good supply of well-trained specialists being essential in
promoting DE-ecosystem = Develop interdisciplinary data
science programs (schools or training programs) to create
regional innovation clusters

B Integration of academia with public & private sectors to enhance
the socio-economic effects of DE-ecosystem (e.g., “Bristol is
Open” in UK as an example PPAP case; and “EU Replicate”
programs for the regional SmartCity initiatives)
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PT (3): Promoting data- & evidence-based
decision makings

1 In all three sectors, promote data- & evidence-based
decision makings by utilizing DE-ecosystem
B Finance: A more efficient & real time credit risk management (by
using alternative data, Al-enabled analytics, and so on) = A

more accurate consumer segmentation and expansion of
financial inclusion (e.g., to marginal borrowers, “thin filers”)

B Real estate: A more transparent RE market data (e.g., RE price
indices); Reducing search and information cost via RE platforms
(the political economy issues to be addressed, more active role
by the government in promoting DE)

B Medical service: A more active utilization of one’s own medical
data (& linking that to MyHealthway); Via medical data and new
analytics, promoting more innovations in medical services
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PT (4): Promoting and regulating the new
Inter-sectoral business

[1 Defining the new industrial boundaries (e.g., conventional
banks vs. BigTechs)

B The traditional industrial boundaries being blurred more and
more (Rising roles of BigTechs such as Google,” Amazon, Ant
Financial, PingAn Insurance, and Kakao)

B More efficient and convenient services provided by the Smart X
industries (e.g., FinTech firms — “Banking is necessary but banks
are not!” & “Is bank still special?”)

B Needto have a LT development strategy for existing service
providers and DPA-enabled Smart X service providers as to how
to regulate and promote their mutual welfare gains
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2021-12

Alibaba group Alibaba

Affiliated companies Description & key business area
Alibaba com The leading wholesale marketplace for global trade
1688.com The leading integrated domestic wholesale market place in China
Alibaba Cloud A clond conyputing service provider
AliExpress A global retail e-commerce platform
Alimama A marketing technology platform
Tacbao.com The China’s largest mobile commerce platform
TWMATT com The China’s largest B2C platform
Cat Niao A logistics data platform operator
Ant Finamial A technology company offering inclnsive financial services

L

(? BEE
Ant Financtal Group
Affiliated compamies Description & key business area

A mebile payment platform with 520m+ users. and business partners

AliPay .
: across over 15 countries
.. The largest monev market fund in the world,
Yu'e Bao = T
managing $221b
AutE MPL for Ant Financial and third-party financial products,

with 180m users.
. An mzurance service firm with 400m users, offering its own
Ant Insurance Service : . -
and 80+ msnrance companies’ products.

A credit scoring company, using social networks and payments history

Zhima (5 Credi
(Sesame) Credit with about 260m users.
Ant Cash Now A credit company for quick fonding for AliPay vsers,
based on user risk profiles.
_ A consumer lending company with 100m active users,
Ant Credit Pay £ Cotpam 65

having lent $95b to consumers through Q1°17.




PT (5): Linking DE-ecosystem to Smart X
(for job creation and regional development)

[J Increasing the social effects of DE-ecosystem by
explicitly linking it to Smart X initiaties
B For both job creation and regional development, link local DE-

ecosystem to SmartCity, SmartFarm, SmarkMedicalService, and
other Smart X initiatives

B Promote DE related policies to enhance area-specific regional
development policies, by benchmarking the good PPAP cases as
well as by explicitly relating them to local job creation (for
balanced regional development)

B Initiating more “result-oriented” DE policies (e.g., job creation);
And monitoring their progresses periodically (e.g., measuring
social BC for DE- and Smart X-related policy initiatives)
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Concluding Remarks




Concluding Remarks

[0 What’s been done?

B A tri-sectoral study to gauge the current states in developing a
DE-ecosystem along with policy tasks needed

B Findings from the literature review and the meta analyses being
shared; Policy implications & tasks also being discussed
[0 What's to be done (i.e., future research agenda)?

B Developing KPIs (e.g., Indices for policy uncertainty, & digitaliz.)

B Analyzing & strategizing local DE-ecosystem (including a more
meaningful classification system for local economies)

B Relating DE-ecosystem to local housing & labor market outcomes
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Thank youl!




